An Integrated ddPCR Lab-on-a-Disc Device for Rapid Screening of Infectious Diseases

Author:

Zhang Wanyi1,Cui Lili23,Wang Yuye4,Xie Zhenming1,Wei Yuanyuan1ORCID,Zhu Shaodi15,Nawaz Mehmood1,Mak Wing-Cheung1,Ho Ho-Pui1,Gu Dayong3,Zeng Shuwen5ORCID

Affiliation:

1. Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China

2. School of Public Health, Guangdong Medical University, Dongguan 523808, China

3. Laboratory Medicine, Shenzhen Key Laboratory of Medical Laboratory and Molecular Diagnostics, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China

4. Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China

5. Light, Nanomaterials & Nanotechnologies (L2n), CNRS-EMR 7004, Université de Technologie de Troyes, 10000 Troyes, France

Abstract

Digital droplet PCR (ddPCR) is a powerful amplification technique for absolute quantification of viral nucleic acids. Although commercial ddPCR devices are effective in the lab bench tests, they cannot meet current urgent requirements for on-site and rapid screening for patients. Here, we have developed a portable and fully integrated lab-on-a-disc (LOAD) device for quantitively screening infectious disease agents. Our designed LOAD device has integrated (i) microfluidics chips, (ii) a transparent circulating oil-based heat exchanger, and (iii) an on-disc transmitted-light fluorescent imaging system into one compact and portable box. Thus, droplet generation, PCR thermocycling, and analysis can be achieved in a single LOAD device. This feature is a significant attribute for the current clinical application of disease screening. For this custom-built ddPCR setup, we have first demonstrated the loading and ddPCR amplification ability by using influenza A virus-specific DNA fragments with different concentrations (diluted from the original concentration to 107 times), followed by analyzing the droplets with an external fluorescence microscope as a standard calibration test. The measured DNA concentration is linearly related to the gradient–dilution factor, which validated the precise quantification for the samples. In addition to the calibration tests using DNA fragments, we also employed this ddPCR-LOAD device for clinical samples with different viruses. Infectious samples containing five different viruses, including influenza A virus (IAV), respiratory syncytial virus (RSV), varicella zoster virus (VZV), Zika virus (ZIKV), and adenovirus (ADV), were injected into the device, followed by analyzing the droplets with an external fluorescence microscope with the lowest detected concentration of 20.24 copies/µL. Finally, we demonstrated the proof-of-concept detection of clinical samples of IAV using the on-disc fluorescence imaging system in our fully integrated device, which proves the capability of this device in clinical sample detection. We anticipate that this integrated ddPCR-LOAD device will become a flexible tool for on-site disease detection.

Funder

Hong Kong Research Grants Council

Innovation and Technology Commission

National Key Research and Development Program of China

Guangdong Science and Technology Foundation

Shenzhen Science and Technology Foundation

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3