One-Pot CRISPR-Cas12a-Based Viral DNA Detection via HRP-Enriched Extended ssDNA-Modified Au@Fe3O4 Nanoparticles

Author:

Park Dong Hyeok1,Haizan Izzati2,Ahn Min Ju3,Choi Min Yu1,Kim Min Jung1,Choi Jin-Ha12ORCID

Affiliation:

1. School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea

2. Department of Bioprocess Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea

3. Department of Biotechnology, Jeonbuk National University, 79 Gobongro, Iksan-si 54596, Jeollabuk-do, Republic of Korea

Abstract

In the context of virus outbreaks, the need for early and accurate diagnosis has become increasingly urgent. In addition to being crucial for effective disease control, timely and precise detection of viral infections is also necessary for the implementation of essential public health measures, especially during pandemics. Among these measures, point-of-care testing (POCT) stands out as a powerful approach with the potential to revolutionize the landscape of viral diagnosis. In this study, we developed a one-pot clustered regularly interspaced short palindromic repeats (CRISPR)-Cas12a-based viral DNA detection system tailored for POCT; this method utilizes multi-enzyme-modified Au@Fe3O4 nanoparticles. As an alternative to nucleic acid amplification, our method uses single-stranded DNA elongation to facilitate multi-enzyme modification; this guarantees heightened sensitivity and expedites the diagnostic process. We achieved a satisfactory limit of detection of 0.25 nM, demonstrating the remarkable sensitivity of the method without the need for sophisticated equipment. The incorporation of Au@Fe3O4 magnetic nanoparticles facilitates sample separation, further streamlining the workflow and reinforcing the simplicity of our method. This integrated approach offers a practical solution for sensitive viral DNA detection in POCT scenarios, advancing the field of rapid and accurate diagnostics.

Funder

National Research Foundation of Korea

Korean government

Ministry of Education and National Research Foundation of Korea

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3