Affiliation:
1. Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
2. Department of Electrical Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
Abstract
Uric acid (UA), the final metabolite of purine, is primarily excreted through urine to maintain an appropriate concentration in the bloodstream. However, any malfunction in this process can lead to complications due to either deficiency or excess amount of UA. Hence, the development of a sensor platform with a wide-range detection is crucial. To realize this, we fabricated a surface-enhanced Raman spectroscopy (SERS) substrate inspired by a type of starfish with numerous protrusions, Asterias forbesi. The Asterias forbesi-inspired SERS (AF-SERS) substrate utilized an Au@Ag nanostructure and gold nanoparticles to mimic the leg and protrusion morphology of the starfish. This substrate exhibited excellent Raman performance due to numerous hotspots, demonstrating outstanding stability, reproducibility, and repeatability. In laboratory settings, we successfully detected UA down to a concentration of 1.16 nM (limit of detection) and demonstrated selectivity against various metabolites. In the experiments designed for real-world application, the AF-SERS substrate detected a broad range of UA concentrations, covering deficiencies and excesses, in both serum and urine samples. These results underscore the potential of the developed AF-SERS substrate as a practical detection platform for UA in real-world applications.
Funder
National Research Foundation of Korea
Ministry of Education
Subject
Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献