Machine-Learning-Based Ground-Level Mobile Network Coverage Prediction Using UAV Measurements

Author:

Tarhuni Naser1ORCID,Al Saadi Ibtihal1,Asif Hafiz M.1ORCID,Mesbah Mostefa1ORCID,Eldirdiry Omer1,Hossen Abdulnasir1

Affiliation:

1. Department of Electrical & Computer Engineering, Sultan Qaboos University, Muscat 123, Oman

Abstract

Future mobile network operators and telecommunications authorities aim to provide reliable network coverage. Signal strength, normally assessed using standard drive tests over targeted areas, is an important factor strongly linked to user satisfaction. Drive tests are, however, time-consuming, expensive, and can be dangerous in hard-to-reach areas. An alternative safe method involves using drones or unmanned aerial vehicles (UAVs). The objective of this study was to use a drone to measure signal strength at discrete points a few meters above the ground and an artificial neural network (ANN) for processing the measured data and predicting signal strength at ground level. The drone was equipped with low-cost data logging equipment. The ANN was also used to classify specific ground locations in terms of signal coverage into poor, fair, good, and excellent. The data used in training and testing the ANN were collected by a measurement unit attached to a drone in different areas of Sultan Qaboos University campus in Muscat, Oman. A total of 12 locations with different topologies were scanned. The proposed method achieved an accuracy of 97% in predicting the ground level coverage based on measurements taken at higher altitudes. In addition, the performance of the ANN in predicting signal strength at ground level was evaluated using several test scenarios, achieving less than 3% mean square error (MSE). Additionally, data taken at different angles with respect to the vertical were also tested, and the prediction MSE was found to be less than approximately 3% for an angle of 68 degrees. Additionally, outdoor measurements were used to predict indoor coverage with an MSE of less than approximately 6%. Furthermore, in an attempt to find a globally accurate ANN module for the targeted area, all zones’ measurements were cross-tested on ANN modules trained for different zones. It was evaluated that, within the tested scenarios, an MSE of less than approximately 10% can be achieved with an ANN module trained on data from only one zone.

Funder

Omantel

Publisher

MDPI AG

Subject

Control and Optimization,Computer Networks and Communications,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3