Enhanced Coagulation with Mn(III) Pre-Oxidation for Treatment of Micro-Polluted Raw Water

Author:

Yan ,Sun ,Wang ,Wang ,Pan ,Wu ,Liu

Abstract

Mn(III) oxidation technology has attracted increasing interest in recent years because of its fast decontamination kinetics and second-pollution-free characteristic. Whether it can be used as a pre-oxidation step to enhance conventional coagulation process remains to be evaluated. Herein, an Fe-coagulation/sedimentation process combined with Mn(III) pre-oxidation (Mn(III)+C/S), hypochlorite pre-oxidation (Cl2+C/S), and permanganate pre-oxidation (PM+C/S) was applied to treat simulated micro-polluted raw water. The removal performance of routine water quality indices (turbidity, dissolved organic carbon, total nitrogen, nitrate-nitrogen, ammonia-nitrogen, Pb(II), and Cr(VI)) and the emerging pollutants (acesulfame, carbamazepine, bisphenol S, and nano-ZnO) created by these three processes were researched. The mechanism of how Mn(III) pre-oxidation influences C/S was explored by identifying the transformation products of Mn(III), measuring the timely variation of flocs’ zeta potential and size, and scanning flocs’ micromorphology. Compared to Cl2+C/S and PM+C/S, Mn(III)+C/S exhibited its superiority in removing dissolved organic carbon (72.9%), total nitrogen (31.74%), and emerging pollutants (21.78%–93.49%). The enhanced removal of these contaminants by Mn(III)+C/S found its explanation in the strong oxidation power of Mn(III) and the multiple roles of in-situ formed MnO2 (e.g., flocculation core, adsorption co-precipitant, and densification agent). The acute toxicity tests confirmed that water treated by Mn(III)+C/S did not show a significant change in the associated toxicity. The findings of the present study indicate that Mn(III) oxidation technology shows great potential as an alternative to pre-oxidation technology of waterworks.

Funder

Natural Science Foundation of Zhejiang Province

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference61 articles.

1. Bio-diatomite dynamic membrane reactor for micro-polluted surface water treatment

2. Enhanced coagulation for high alkalinity and micro-polluted water: The third way through coagulant optimization

3. Study on coagulation/UF process for treatment of micropolluted raw water;Yan;Water Purif. Technol.,2005

4. High-rate UBAF for pretreatment of micro-polluted raw water;Lu;Chin. Water Wastewater,2009

5. Progress of treatment technology of water from micro-polluted water sources in China;Pan;Ind. Water Treat.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3