Progress in Genomic Mating in Domestic Animals

Author:

Zhang Pengfei,Qiu Xiaotian,Wang Lixian,Zhao FupingORCID

Abstract

Selection is a continuous process that can influence the distribution of target traits in a population. From the perspective of breeding, elite individuals are selected for breeding, which is called truncated selection. With the introduction and application of the best linear unbiased prediction (BLUP) method, breeders began to use pedigree-based estimated breeding values (EBV) to select candidates for the genetic improvement of complex traits. Although truncated selection based on EBV can significantly improve the genetic progress, the genetic relationships between individuals with a high breeding value are usually closed, and the probability of being co-selected is greater, which will lead to a rapid increase in the level of inbreeding in the population. Reduced genetic variation is not conducive to long-term sustainable breeding, so a trade-off between genetic progress and inbreeding is required. As livestock and poultry breeding enters the genomic era, using genomic information to obtain optimal mating plans has formally been proposed by Akdemir et al., a method called genomic mating (GM). GM is more accurate and reliable than using pedigree information. Moreover, it can effectively control the inbreeding level of the population and achieve long-term and sustainable genetic gain. Hence, GM is more suitable for modern animal breeding, especially for local livestock and poultry breed conservation and genetic improvement. This review mainly summarized the principle of genomic mating, the methodology and usage of genomic mating, and the progress of its application in livestock and poultry.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Agricultural Science and Technology Innovation Program

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3