Author:
Ren Yufei,Huang Yikang,Wang Yichen,Zhang Shijie,Qu Hao,Ma Jie,Wang Longhe,Li Lin
Abstract
Thanks to the boom of computer vision techniques and artificial intelligence algorithms, it is more available to achieve artificial rearing for animals in real production scenarios. Improving the accuracy of chicken day-age detection is one of the instances, which is of great importance for chicken rearing. To solve this problem, we proposed an attention encoder structure to extract chicken image features, trying to improve the detection accuracy. To cope with the imbalance of the dataset, various data enhancement schemes such as Cutout, CutMix, and MixUp were proposed to verify the effectiveness of the proposed attention encoder. This paper put the structure into various mainstream CNN networks for comparison and multiple ablation experiments. The final experimental results show that by applying the attention encoder structure, ResNet-50 can improve the accuracy of chicken age detection to 95.2%. Finally, this paper also designed a complete image acquisition system for chicken houses and a detection application configured for mobile devices.
Funder
Key-Area Research and Development Program of Guangdong Province
Subject
Critical Care Nursing,Pediatrics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献