Compressive Sensing for Tomographic Imaging of a Target with a Narrowband Bistatic Radar

Author:

Nguyen Ngoc HungORCID,Berry PaulORCID,Tran Hai-TanORCID

Abstract

This paper introduces a new approach to bistatic radar tomographic imaging based on the concept of compressive sensing and sparse reconstruction. The field of compressive sensing has established a mathematical framework which guarantees sparse solutions for under-determined linear inverse problems. In this paper, we present a new formulation for the bistatic radar tomography problem based on sparse inversion, moving away from the conventional k-space tomography approach. The proposed sparse inversion approach allows high-quality images of the target to be obtained from limited narrowband radar data. In particular, we exploit the use of the parameter-refined orthogonal matching pursuit (PROMP) algorithm to obtain a sparse solution for the sparse-based tomography formulation. A key important feature of the PROMP algorithm is that it is capable of tackling the dictionary mismatch problem arising from off-grid scatterers by perturbing the dictionary atoms and allowing them to go off the grid. Performance evaluation studies involving both simulated and real data are presented to demonstrate the performance advantage of the proposed sparsity-based tomography method over the conventional k-space tomography method.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference41 articles.

1. Inverse Synthetic Aperture Radar Imaging: Principles, Algorithms and Applications;Chen,2014

2. Through-the-Wall Radar Imaging,2017

3. Time-Frequency Transforms for Radar Imaging and Signal Analysis;Chen,2002

4. Where has all the spectrum gone?

5. Coherent Doppler tomography for microwave imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3