A Spatial Adaptive Algorithm Framework for Building Pattern Recognition Using Graph Convolutional Networks

Author:

Bei Weijia,Guo Mingqiang,Huang Ying

Abstract

Graph learning methods, especially graph convolutional networks, have been investigated for their potential applicability in many fields of study based on topological data. Their topological data processing capabilities have proven to be powerful. However, the relationships among separate entities include not only topological adjacency, but also correlation in vision, for example, the spatial vector data of buildings. In this study, we propose a spatial adaptive algorithm framework with a data-driven design to accomplish building group division and building group pattern recognition tasks, which is not sensitive to the difference in the spatial distribution of the buildings in various geographical regions. In addition, the algorithm framework has a multi-stage design, and processes the building group data from whole to parts, since the objective is closely related to multi-object detection on topological data. By using the graph convolution method and a deep neural network (DNN), the multitask model in this study can learn human thoughts through supervised training, and the whole process only depends upon the descriptive vector data of buildings without any ancillary data for building group partition. Experiments confirmed that the method for expressing buildings and the effect of the algorithm framework proposed are satisfactory. In summary, using deep learning methods to complete the tasks of building group division and building group pattern recognition is potentially effective, and the algorithm framework is worth further research.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PolygonGNN: Representation Learning for Polygonal Geometries with Heterogeneous Visibility Graph;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. Artificial intelligence studies in cartography: a review and synthesis of methods, applications, and ethics;Cartography and Geographic Information Science;2024-01-16

3. Machine learning in cartography;Cartography and Geographic Information Science;2024-01-02

4. Classification of urban interchange patterns using a model combining shape context descriptor and graph convolutional neural network;Geo-spatial Information Science;2023-10-31

5. ReCo: A Dataset for Residential Community Layout Planning;Proceedings of the 31st ACM International Conference on Multimedia;2023-10-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3