Effects of UVR on Photosynthesis in Sargassum horneri (Turner) C. Agardh Adapted to Different Nitrogen Levels

Author:

Xu Zhiguang12,Jiang Xiaotong1,Li Baoqi1,Lv Zhengzheng1,Wu Hongyan12,Zang Shasha12,Yan Fang12,Bao Menglin12

Affiliation:

1. School of Life Sciences, Ludong University, Yantai 264025, China

2. Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University, Yantai 264025, China

Abstract

In recent years, golden tides caused by drifting Sargassum horneri (Turner) C. Agardh have caused serious ecological disasters in coastal areas of China. Eutrophication is an important cause of the formation of the golden tide. Additionally, the drifting population on the surface of the ocean is exposed to more ultraviolet radiation (UVR) than the attached population on the sea floor. In this study, the thalli of S. horneri were cultivated under two levels of nitrogen (LN: natural seawater, in which the concentration of NO3−-N was 1 µmol L−1; HN: NO3−-enriched seawater, in which the concentration of NO3−-N was 200 μmol L−1) for 6 days with low photosynthetically active radiation (PAR), and then exposed to three levels of radiation (P: photosynthetically active radiation (PAR), 400–700 nm; PA: PAR + UVA, 320–700 nm; PAB: PAR + UVA + UVB, 280–700 nm) under each level of nitrogen for 2 h to investigate the effects of high UVR and nitrogen on photosynthesis. The results showed that the high level of N (HN) only enhanced the synthesis of pigments after 6 days of pre-cultivation under low PAR. After 2 h of high UVR exposure, high P, PA, and PB decreased the maximum photochemical quantum yield (Fv/Fm) and increased non-photochemical quenching (NPQ) in S. horneri regardless of the N level, and PAB significantly decreased Fv/Fm compared to PA under the LN condition alone. Under the LN condition, compared to the P group, PA and PAB significantly promoted the synthesis of carotenoids. Under the HN condition, compared to the P group, PAB increased the absorbed flux by active RCs (ABS/RC) and dissipated the energy flux by active RCs (DI0/RC) in S. horneri alone. Furthermore, HN increased Fv/Fm, ABS/RC, and DI0/RC more in S. horneri with PAB in comparison to those in the LN and PAB group. However, no significant differences in these parameters were observed between the LN and HN conditions under the same UVR treatments. These results demonstrate that drifting S. horneri on the surface of seawater could be inhibited by the high P; however, S. horneri living in eutrophic high-nitrogen seawater may have a stronger ability to resist high UVR damage, especially with regard to PAB radiation, which may be one of the reasons for the formation of golden tides in coastal seawater.

Funder

National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3