Affiliation:
1. UMR 5805 EPOC, Univ. Bordeaux, CNRS, Bordeaux INP, Allée Geoffrey Saint-Hilaire, CS 50023, 33615 Pessac, France
2. Service Hydrographique et Océanographique de la Marine (SHOM), 13 rue Chatelier, CS 92803, CEDEX 2, 29228 Brest, France
Abstract
Beach slope is a critical parameter to, e.g., beach safety, wave reflection at the coast and longshore transport rate. However, it is usually considered as a time-invariant and profile-average parameter. Here, we apply a state-of-the-art equilibrium model to hindcast beach slope variability from the time scales of days to years at the high-energy meso-macrotidal sandy beach of Truc Vert, southwest France. We use 9 years of bimonthly beach surveys to compute beach slope time series at different elevations. Results show that beach slope exhibits an equilibrium response with contrasting behaviors along two distinct areas of the beach profile. From 0 to 2 m above mean sea level, which is located under the berm crest, a slope response predominantly at the storm time scale is observed. The beach slope steepens under low energy waves, with the equilibrium model explaining up to 40% of the observed beach slope variability. In contrast, from 2.5 to 4 m above mean sea level, which is above the berm crest, the beach slope steepens under high-energy waves. Within this region of the beach profile, the response time scale increases upwards from seasonal (~2.5 m) to seasonal (~4 m), with the model explaining up to 65% of the observed beach slope variability. Such behaviors are found to be enforced by the berm dynamics developing from the end of the winter to early autumn, providing new perspectives to model and predict beach slope on sandy beaches.
Funder
MEPELS
Observatoire Aquitain des Sciences de l’Univers
Observatoire de la Côte de Nouvelle-Aquitaine
Service National d’Observation (SNO) Dynalit
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献