Non-Hydrostatic Numerical Model of Bragg Resonance on Periodically Submerged Breakwater

Author:

Oginni Tolulope Emmanuel12ORCID,Zhao Xizeng134

Affiliation:

1. Ocean College, Zhejiang University, Zhoushan 316021, China

2. School of Geography, Environment and Earth Science, Victoria University of Wellington, Wellington 6140, New Zealand

3. School of Marine Engineering Equipment, Zhejiang Ocean University, Zhoushan 316022, China

4. Guangdong Advanced Energy Laboratory (YANGJIANG Offshore Wind Lab), Guangzhou 510530, China

Abstract

The Bragg resonance (BR) of a reflection coefficient resulting from the propagation of monochronic waves over periodically submerged breakwater was studied using the non-hydrostatic numerical model SWASH (Simulating WAves till SHore). Bragg resonance occurs when the incident wavelength is approximately twice the structural length of a periodic structural breakwater according to Bragg’s law and conditions. This study aimed to investigate the dynamics of Bragg resonance at water depths of 0.2, 0.3, and 0.4 m as the number of periodically submerged breakwater and their wavelengths changed. Specifically, this study focused on the Bragg resonance point of occurrence at a ratio of two structural wavelengths to the incoming wavelengths (2S/L). Regular waves were propagated over two periodically submerged breakwaters, with increasing structural wavelengths from 1 to 2 m at 0.2 m intervals. The results showed that Bragg resonances rapidly increase in value as the water depth decreases, but do not shift in their point of occurrence as the number of periodically submerged breakwaters increases. However, the Bragg resonance shifts leftward in 2S/L as the structural wavelength increases, with a slight increase in value at shallower water depths. More incident wave energy is reflected when the number of periodically submerged breakwater increases compared with when the structural wavelength of the periodically submerged breakwater increases. The differences in the Bragg resonance values are associated with the changes in the number of periodically submerged breakwater. Additionally, the shift in the point of occurrence was influenced by both water depth and structural length. This causes the Resulted Bragg resonance to deviate from the Expected Bragg resonance, which could be the reason why Bragg resonance does not mainly occur at 2S/L=1, as stated by Bragg’s law.

Funder

National Natural Science Foundation of China

Chinese Government Scholarship

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference27 articles.

1. Sand ripples under sea waves Part 1. Ripple formation;Blondeaux;J. Fluid Mech.,1990

2. Wave-formed sand ripples at Duck, North Carolina;Daniel;J. Geophys. Res. Ocean,2001

3. Analytical study of Bragg resonance by singly periodic sinusoidal ripples based on the modified mild-slope equation;Liu;Coast. Eng.,2019

4. Dynamical evolution of sand ripples under water;Stegner;Phys. Rev.,1999

5. Formation of sand bars under surface waves;Yu;J. Fluid Mech.,2000

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3