Research on a DC–DC Converter and Its Advanced Control Strategy Applied to the Integrated Energy System of Marine Breeding Platforms

Author:

Chen Hongxing1ORCID,Lin Weiming2,He Wei1ORCID

Affiliation:

1. Fujian Engineering Research Center of Safety Control for Ship Intelligent Navigation, College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou 350108, China

2. Fujian Key Laboratory of New Energy Generation and Power Conversion, Fuzhou University, Fuzhou 350108, China

Abstract

The deep-sea aquaculture industry will become one of the important pillars of the future marine economy. However, the application of clean energy in the new scenario needs to be strengthened for platform operation. For this kind of renewable-energy distributed-generation system, an energy storage system is essential. A bidirectional DC–DC converter is essential for distributed power generation systems. It connects a variety of renewable energy sources with energy storage cells. A high-gain bidirectional Cuk circuit with zero ripple is proposed in the paper. It is characterized by a simple structure, zero ripple, low voltage stress of semiconductor power devices, and high voltage gain. A passivity-based control with linear active disturbance rejection is proposed to solve the problems of the large steady-state error. The zero steady-state error, strong robustness, and whole-range stability have been obtained for the proposed control strategy. Finally, a simulation was carried out. A 100 W, 48 V/400 V prototype was built to verify the validity of the theoretical analysis for the proposed circuit. The improved passivity-based control strategy was verified to solve the contradiction between rapidity and overshoot. It can be realized to improve the dynamic performance of the proposed converter and achieve robust control.

Funder

Fujian science and technology Major special project

National Natural Science Foundation of China

special funds for marine economic development of Fujian Province

Education and Research Project for Young and Middle-aged Teachers of Fujian Provincial Department of Education

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3