THMC Fully Coupled Model of Natural Gas Hydrate under Damage Effect and Parameter Sensitivity Analysis

Author:

Qiu Yue12ORCID,Wang Xiangfu12ORCID,Wang Zhaofeng3,Liang Wei4,Zhao Tongbin12

Affiliation:

1. College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao 266590, China

2. State Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China

3. Ordos Haohua Clean Coal Company Limited, Ordos 017000, China

4. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China

Abstract

In order to study the influence of damage on the gas production of natural gas hydrate, a multi-physical field theoretical model considering damage effect and coupling thermal-hydraulic-mechanical-chemical (THMC) was established by theoretical analysis and numerical simulation. The THMC model establishes the relationship between the elastic modulus of hydrate sediment and hydrate saturation during the whole process of hydrate decomposition. The THC (thermal-hydraulic-chemical) and THMC fully coupled models not considering or considering the damage effect were compared and analyzed, and the reliability of the THMC fully coupled model was verified. On this basis, the deformation, permeability and damage of hydrate sediments under different initial hydrate saturations and different depressurization amplitudes, as well as the hydrate gas production rate and cumulative gas production, are analyzed. The results showed that higher initial hydrate saturation inhibited the development of damage, maintained stable gas production and increased cumulative gas production. Larger depressurization promoted damage and increased cumulative gas production, but it was easy to cause stability problems.

Funder

National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3