Deriving Coastal Shallow Bathymetry from Sentinel 2-, Aircraft- and UAV-Derived Orthophotos: A Case Study in Ligurian Marinas

Author:

Apicella Lorenza1ORCID,De Martino Monica1ORCID,Ferrando Ilaria2ORCID,Quarati Alfonso1ORCID,Federici Bianca2ORCID

Affiliation:

1. Institute for Applied Mathematics and Information Technologies, National Research Council, 16149 Genoa, Italy

2. Geomatics Laboratory, Department of Civil, Chemical and Environmental Engineering, University of Genoa, 16145 Genoa, Italy

Abstract

Bathymetric surveys of shallow waters are increasingly necessary for navigational safety and environmental studies. In situ surveys with floating acoustic sensors allow the collection of high-accuracy bathymetric data. However, such surveys are often unfeasible in very shallow waters in addition to being expensive and requiring specific sectorial skills for the acquisition and processing of raw data. The increasing availability of optical images from Uncrewed Aerial Vehicles, aircrafts and satellites allows for bathymetric reconstruction from images thanks to the application of state-of-the-art algorithms. In this paper, we illustrate a bathymetric reconstruction procedure involving the classification of the seabed, the calibration of the algorithm for each class and the subsequent validation. We applied this procedure to high-resolution, UAV-derived orthophotos, aircraft orthophotos and Sentinel-2 Level-2A images of two marinas along the western Ligurian coastline in the Mediterranean Sea and validated the results with bathymetric data derived from echo-sounder surveys. Our findings showed that the aircraft-derived bathymetry is generally more accurate than the UAV-derived and Sentinel-2 bathymetry in all analyzed scenarios due to the smooth color of the aircraft orthophotos and their ability to reproduce the seafloor with a considerable level of detail.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3