Self-Supervised Pre-Training Joint Framework: Assisting Lightweight Detection Network for Underwater Object Detection

Author:

Wang Zhuo1,Chen Haojie1,Qin Hongde1,Chen Qin1

Affiliation:

1. College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China

Abstract

In the computer vision field, underwater object detection has been a challenging task. Due to the attenuation of light in a medium and the scattering of light by suspended particles in water, underwater optical images often face the problems of color distortion and target feature blurring, which greatly affect the detection accuracy of underwater object detection. Although deep learning-based algorithms have achieved state-of-the-art results in the field of object detection, most of them cannot be applied to practice because of the limited computing capacity of a low-power processor embedded in unmanned underwater vehicles. This paper proposes a lightweight underwater object detection network based on the YOLOX model called LUO-YOLOX. A novel weighted ghost-CSPDarknet and simplified PANet were used in LUO-YOLOX to reduce the parameters of the whole model. Moreover, aiming to solve the problems of color distortion and unclear features of targets in underwater images, this paper proposes an efficient self-supervised pre-training joint framework based on underwater auto-encoder transformation (UAET). After the end-to-end pre-training process with the self-supervised pre-training joint framework, the backbone of the object detection network can extract more essential and robust features from degradation images when retrained on underwater datasets. Numerous experiments on the URPC2021 and detecting underwater objects (DUO) datasets verify the performance of our proposed method. Our work can assist unmanned underwater vehicles to perform underwater object detection tasks more accurately.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3