A Biologist’s Guide to the Galaxy: Leveraging Artificial Intelligence and Very High-Resolution Satellite Imagery to Monitor Marine Mammals from Space

Author:

Khan Christin B.1ORCID,Goetz Kimberly T.2ORCID,Cubaynes Hannah C.3ORCID,Robinson Caleb4,Murnane Erin5,Aldrich Tyler1,Sackett Meredith1ORCID,Clarke Penny J.36ORCID,LaRue Michelle A.78,White Timothy9,Leonard Kathleen10,Ortiz Anthony4,Lavista Ferres Juan M.4

Affiliation:

1. Northeast Fisheries Science Center, National Marine Fisheries Service, NOAA, Woods Hole, MA 02543, USA

2. Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA 98115, USA

3. British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK

4. Microsoft AI for Good Research Lab, 1 Microsoft Way, Redmond, WA 98052, USA

5. Naval Research Laboratory, Naval Center for Space Technology (NCST), Washington, DC 20375, USA

6. School of Engineering, University of Edinburgh, Sanderson Building, Robert Stevenson Road, The King’s Buildings, Edinburgh EH9 3FB, UK

7. School of Earth and Environment, University of Canterbury, Christchurch 8140, New Zealand

8. Department of Earth and Environmental Science, University of Minnesota, Minneapolis, MN 55455, USA

9. Bureau of Ocean Energy Management, Environmental Studies Program, Sterling, VA 20166, USA

10. Protected Resources Division, Alaska Regional Office, National Marine Fisheries Service, NOAA, Anchorage, AK 99513, USA

Abstract

Monitoring marine mammals is of broad interest to governments and individuals around the globe. Very high-resolution (VHR) satellites hold the promise of reaching remote and challenging locations to fill gaps in our knowledge of marine mammal distribution. The time has come to create an operational platform that leverages the increased resolution of satellite imagery, proof-of-concept research, advances in cloud computing, and machine learning to monitor the world’s oceans. The Geospatial Artificial Intelligence for Animals (GAIA) initiative was formed to address this challenge with collaborative innovation from government agencies, academia, and the private sector. In this paper, we share lessons learned, challenges faced, and our vision for how VHR satellite imagery can enhance our understanding of cetacean distribution in the future.

Funder

U.S. Naval Research Laboratory

Microsoft

National Oceanographic Partnership Program

National Protected Species Toolbox initiative

NOAA’s High Performance Computing and Communications IT Incubator

Marine Mammal Commission

Ecosystems component of the British Antarctic Survey

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference81 articles.

1. Marine mammal survey techniques applicable in developing countries;Aragones;Asian Mar. Bio.,1997

2. Kaschner, K., Tittensor, D.P., Ready, J., Gerrodette, T., and Worm, B. (2011). Current and future patterns of global marine mammal biodiversity. PLoS ONE, 6.

3. Review on methods used for wildlife species and individual identification;Petso;J. Wildl. Res.,2021

4. Hayes, S.H., Josephson, E., Maze-Foley, K., Rosel, P.E., and Wallace, J.U.S. (2022, December 23). Atlantic and Gulf of Mexico Marine Mammal Stock Assessments 2021. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-NE-288, Available online: https://repository.library.noaa.gov/view/noaa/45014.

5. Shelden, K.E.W., and Wade, P.R. (2019). Aerial Surveys, Distribution, Abundance, and Trend of Belugas (Delphinapterus leucas) in Cook Inlet, Alaska, June 2018, Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv.. AFSC Processed Rep.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3