Roving Multiple Camera Array with Structure-from-Motion for Coastal Monitoring

Author:

Godfrey Samantha1,Cooper James R.1,Plater Andrew J.1ORCID

Affiliation:

1. School of Environmental Sciences, University of Liverpool, Roxby Building, Liverpool L69 7ZT, UK

Abstract

Regular monitoring is essential for vulnerable coastal locations such as areas of landward retreat. However, for coastal practitioners, surveying is limited by budget, specialist personnel/equipment and weather. In combination structure-from-motion and multi-view stereo (SfM-MVS) has helped to improve accessibility to topographic data acquisition. Pole-mounted cameras with SfM-MVS have gained traction but to guarantee coverage and reconstruction quality, greater understanding of camera position and interaction is required. This study uses a multi-camera array for image acquisition and reviews processing procedures in Agisoft Photoscan (Metashape). The camera rig was deployed at three sites and results were verified against a terrestrial laser scanner (TLS) and independent precision estimates. The multi-camera approach provided effective image acquisition ~11 times faster than the TLS. Reconstruction quality equalled (>92% similarity) the TLS, subject to processing parameters. A change in the image alignment parameter demonstrated a significant influence on deformation, reducing reprojection error by~94%. A lower densification parameter (‘High’) offered results ~4.39% dissimilar from the TLS at 1/8th of the processing time of other parameters. Independent precision estimates were <8.2 mm for x, y and z dimensions. These findings illustrate the potential of multi-camera systems and the influence of processing on point cloud quality and computation time.

Funder

European Regional Development Fund

Low Carbon Eco-innovatory with industrial partner Marlan Maritime Technologies Ltd

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3