Affiliation:
1. Institute of Marine Science, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
2. State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
3. First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
Abstract
The exploitation of marine renewable energy sources, such as offshore wind (OW), wave (WA), and tidal stream (TS) energy, is essential to reducing carbon emissions in China. Here, we demonstrate that a well-designed deployment of OW-WA-TS joint exploitation would be better than OW alone in improving performance in terms of the total amount and temporal stability of integrated power output in the northern Bohai Sea/Strait, the Subei Shoal, and the surrounding areas of Taiwan and Hainan Island. The design principles for an efficient joint energy deployment can be summarized as follows: first, a small ratio of WA output favors a temporally stable performance, except for areas around Taiwan Island and southwest of Hainan Island. Second, more TS turbines will contribute to steadier integrated outputs. Meanwhile, in the coastal waters of Guangdong and Zhejiang, the potential of WA to increase the total amount of power output is very high due to its minor impact on temporal stability. Finally, joint exploitation significantly reduces diurnal power fluctuations compared with OW alone, which is crucial for the steady operation of power grids, power sufficiency, and controllability in periods with low or no wind.
Funder
Basic Scientific Fund for National Public Research Institutes of China
Shantou University Scientific Research Funded Project
MEL Visiting Fellowship
Natural Science Foundation of China grants
National Key R&D Program of China
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献