A Novel Steganography Method for Infrared Image Based on Smooth Wavelet Transform and Convolutional Neural Network

Author:

Bai Yu1,Li Li1,Lu Jianfeng1,Zhang Shanqing1,Chu Ning2

Affiliation:

1. School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China

2. Zhe-Jiang Shangfeng Special Blower Company Ltd., Shaoxing 312352, China

Abstract

Infrared images have been widely used in many research areas, such as target detection and scene monitoring. Therefore, the copyright protection of infrared images is very important. In order to accomplish the goal of image-copyright protection, a large number of image-steganography algorithms have been studied in the last two decades. Most of the existing image-steganography algorithms hide information based on the prediction error of pixels. Consequently, reducing the prediction error of pixels is very important for steganography algorithms. In this paper, we propose a novel framework SSCNNP: a Convolutional Neural-Network Predictor (CNNP) based on Smooth-Wavelet Transform (SWT) and Squeeze-Excitation (SE) attention for infrared image prediction, which combines Convolutional Neural Network (CNN) with SWT. Firstly, the Super-Resolution Convolutional Neural Network (SRCNN) and SWT are used for preprocessing half of the input infrared image. Then, CNNP is applied to predict the other half of the infrared image. To improve the prediction accuracy of CNNP, an attention mechanism is added to the proposed model. The experimental results demonstrate that the proposed algorithm reduces the prediction error of the pixels due to full utilization of the features around the pixel in both the spatial and the frequency domain. Moreover, the proposed model does not require either expensive equipment or a large amount of storage space during the training process. Experimental results show that the proposed algorithm had good performances in terms of imperceptibility and watermarking capacity compared with advanced steganography algorithms. The proposed algorithm improved the PSNR by 0.17 on average with the same watermark capacity.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3