On the Formation and Distribution of In Situ Synthesized TiB2 Reinforcements in Cast Aluminium Matrix Composites

Author:

Rane KedarnathORCID,Dhokey Narendra

Abstract

Introduction of TiB2 reinforcements into aluminium matrices allows composites to be obtained that exhibit excellent mechanical properties and good wear and corrosion resistance. These composites find applications in the automotive, aerospace and marine industries. In the present work, the in situ synthesis of ultrafine TiB2 particulates in an aluminium matrix was accomplished by reaction synthesis of TiB2 using K2TiF6 and KBF4 (in 120% excess to the stoichiometrically needed) fluxes in pre-melted aluminium. Composites were prepared with different concentrations of TiB2 in (2.5, 5 and 10 wt %) in an aluminium matrix. The holding time of the molten composite in an induction furnace was varied from 10 min to 50 min. The in situ formation of TiB2 reinforcement and its distribution in cast aluminiummatrix composites was analyzed based on microstructural studies, microhardness measurements and wear tests. The exothermic reaction between the halide fluxes starts after 10 min of holding time and completes before 20 min of holding time. The dominant phase was TiB2 after 20 min of holding time, while the formation of Ti3B4 was observed as the holding time was extended. The distribution of the reinforcing phases was studied by analyzing the scanning electron microscopy (SEM) images. An optimum holding time (20 min) of the composite melt was determined based on the dominant wear mechanism, microhardness, and phase composition of the composites.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3