The “New Transamazonian Highway”: BR-319 and Its Current Environmental Degradation

Author:

Lima MendelsonORCID,Santana Dthenifer Cordeiro,Junior Ismael Cavalcante Maciel,Costa Patricia Monique Crivelari da,Oliveira Pedro Paulo Gomes de,Azevedo Raul Pio de,Silva Rogerio de Souza,Marinho Ubiranei de Freitas,Silva Valdinete da,Souza Juliana Aparecida Arantes de,Rossi Fernando Saragosa,Delgado Rafael Coll,Teodoro Larissa Pereira RibeiroORCID,Teodoro Paulo EduardoORCID,Silva Junior Carlos Antonio daORCID

Abstract

The Brazilian government intends to complete the paving of the BR-319 highway, which connects Porto Velho in the deforestation arc region with Manaus in the middle of the Amazon Forest. This paving is being planned despite environmental legislation, and there is concern that its effectiveness will cause additional deforestation, threatening large portions of forest, conservation units (CUs), and indigenous lands (ILs) in the surrounding areas. In this study, we evaluated environmental degradation along the BR-319 highway from 2008 to 2020 and verified whether highway maintenance has contributed to deforestation. For this purpose, we created a 20 km buffer adjacent to the BR-319 highway and evaluated variables extracted from remote sensing information between 2008 and 2020. Fire foci, burned areas, and rainfall data were used to calculate a drought index using statistical tests for a time series. Furthermore, these were related to data on deforestation, CUs, and ILs using principal component analysis and Pearson’s correlation. Our results showed that 743 km2 of forest was deforested during the period evaluated, most of which occurred in the last four years. A total of 16,472 fire foci were identified. Both deforestation and fire foci occurred mainly outside the CUs and ILs. The most affected areas were close to capital cities, and after resuming road maintenance in 2015, deforestation increased outside the capital cities. Current government policy for Amazon occupation promotes deforestation and will compromise Brazil’s climate goals of reducing greenhouse gas (GHG) emissions and deforestation.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3