Abstract
The open-layered structure of Vanadium pentoxide (V2O5) has triggered significant interest in exploring its energy-related application as lithium (Li) intercalation cathode material. Various methods are extensively studied to improve the Li diffusion using thin films or nanoarchitecture. In this work, high-quality two-dimensional (2D) inverse opal α-V2O5 films were synthesized via a modified ‘dynamic hard template’ infiltration strategy using sacrificial polystyrene spheres (PS, a diameter of 530 nm) photonic crystal as a template. The new material exhibited an excellent porous array with featured structural colors in a large area. The electrochromic behavior was explored by combining bandgap and electrochemical characterization. On the one hand, the intercalation/deintercalation of Li+ played an important role in the bandgap (Eg), and thereafter on the visible range transmittance through changing the film’s stoichiometry and the valence of vanadium ions. On the other hand, the asymmetry of the lattice due to the disordered distribution of Li+ within the V2O5 interlayer and/or the formation of an irreversible phase explained the change in transmittance with voltage.
Funder
National Sciences and Engineering Research Council (NSERC) of Canada
Subject
General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献