Author:
Shi Zhongmeng,Zou Chao,Zhou Feiyu,Zhao Jianping
Abstract
The UV durability of carbon fiber composites has been a concern. In this work, UV irradiation on carbon fiber-reinforced polymer (CFRP) materials was performed using an artificial accelerated UV aging chamber to investigate the effect of UV exposure on carbon fiber composites. UV aging caused some of the macromolecular chains on the surface resin to break, resulting in the loss of small molecules and loss of mass. After 80 days of UV irradiation exposure, a significant decline in the macroscopic mechanical properties occurred in the longitudinal direction, with the largest decrease of 23% in longitudinal compressive strength and a decreasing trend in the transverse mechanical properties at the later stage of aging. The microscopic mechanical properties of the CFRP specimens were characterized using nanoindentation, and it was found that UV aging had an embrittlement effect on the matrix, and its hardness/modulus values were higher than the initial values with UV exposure. The fibers were less affected by UV irradiation.
Funder
National Key R&D Program of China
Subject
General Materials Science
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献