Abstract
Background. There are several in vitro testing options to investigate the efficacy of sports mouthguards. None of these represent everyday situations, but the effects of simple laws of physics can be observed. This enables the comparison of conventional materials for mouthguards towards fabrications from additive manufacturing. Methods. A ball-drop experiment measured the maximum force and temporospatial distribution of a vertical impact on six material groups and a reference group (No-MG). Three conventional materials (ethylenvinylacetate) with 1, 2, and 3 layers were compared with additively manufactured (AM) specimens of comparable layering with a respective thickness of 4 mm, 5 mm, and 6.8 mm. Results. A maximum force of 8982.35 N ± 305.18 (No-MG) was maximum damped to 2470.60 N ± 87.00 (conventional 6.8 mm) compared with 5585.09 N ± 203.99 (AM 6.8 mm) Thereby, the ratio between shock absorption per millimeter was best for 4 mm thickness with means of 1722 N (conventional) and 624 N (AM). Conclusions. Polymer layers demonstrated a force reduction up to 71.68%. For now, additively processed resins of comparable hardness and layering are inferior to conventional fabrications.
Subject
General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献