Ensemble Machine Learning Outperforms Empirical Equations for the Ground Heat Flux Estimation with Remote Sensing Data

Author:

Bonsoms JosepORCID,Boulet GillesORCID

Abstract

Estimating evapotranspiration at the field scale is a major component of sustainable water management. Due to the difficulty to assess some major unknowns of the water cycle at that scale, including irrigation amounts, evapotranspiration is often computed as the residual of the instantaneous surface energy budget. One of the Surface Energy Balance components with the largest uncertainties in their quantification over bare soils and sparse vegetation areas is the ground heat flux (G). Over the last decades, the estimation of G with remote sensing (RS) data has been mainly achieved with empirical equations, on the basis of the G and net radiation (Rn) ratio, G/Rn. The G/Rn empirical equations generally require vegetation data (Type I empirical equations), in combination with surface temperature (Ts) and albedo (Type II empirical equations). In this article, we aim to evaluate the estimation of G with RS data. Here, we compared eight G/Rn empirical equations against two types of machine learning (ML) methods: an ensemble ML type, the Random Forest (RF), and the Neural Networks (NN). The comparison of each method was evaluated using a wide range of climate and land cover datasets, including data from Eddy-Covariance towers that extend along the mid-latitude areas that encompass the European and African continents. Our results have shown evidence that the driver of G in bare soils and sparse vegetation areas (Fraction of Vegetation, Fv ≤ 0.25) is Ts, instead of vegetation greenness indexes. On the other hand, the accuracy in the estimation of G with Rn, Ts or Fv decreases in densely vegetated areas (Fv ≥ 0.50). There are no significant differences between the most accurate Type I and II empirical equations. For bare soils and sparse vegetation areas the empirical equation which combines the Leaf Area Index (LAI) and Ts (E7) estimates G best. In densely vegetated areas, an exponential empirical equation based on Fv (E4), shows the best performance. However, ML better estimates G than the empirical equations, independently of the Fv ranges. An RF model with Rn, LAI and Ts as predictor variables shows the best accuracy and performance metrics, outperforming the NN model.

Funder

Centre National d'Études Spatiales

University of Barcelona

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3