Improved Daily Evapotranspiration Estimation Using Remotely Sensed Data in a Data Fusion System

Author:

Yang Yun,Anderson Martha,Gao Feng,Xue Jie,Knipper Kyle,Hain Christopher

Abstract

Evapotranspiration (ET) represents crop water use and is a key indicator of crop health. Accurate estimation of ET is critical for agricultural irrigation and water resource management. ET retrieval using energy balance methods with remotely sensed thermal infrared data as the key input has been widely applied for irrigation scheduling, yield prediction, drought monitoring and so on. However, limitations on the spatial and temporal resolution of available thermal satellite data combined with the effects of cloud contamination constrain the amount of detail that a single satellite can provide. Fusing satellite data from different satellites with varying spatial and temporal resolutions can provide a more continuous estimation of daily ET at field scale. In this study, we applied an ET fusion modeling system, which uses a surface energy balance model to retrieve ET using both Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) data and then fuses the Landsat and MODIS ET retrieval timeseries using the Spatial-Temporal Adaptive Reflectance Fusion Model (STARFM). In this paper, we compared different STARFM ET fusion implementation strategies over various crop lands in the central California. In particular, the use of single versus two Landsat-MODIS pair images to constrain the fusion is explored in cases of rapidly changing crop conditions, as in frequently harvested alfalfa fields, as well as an improved dual-pair method. The daily 30 m ET retrievals are evaluated with flux tower observations and analyzed based on land cover type. This study demonstrates improvement using the new dual-pair STARFM method compared with the standard one-pair STARFM method in estimating daily field scale ET for all the major crop types in the study area.

Funder

National Aeronautics and Space Administration

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3