A CFAR Algorithm Based on Monte Carlo Method for Millimeter-Wave Radar Road Traffic Target Detection

Author:

Yang BoORCID,Zhang Hua

Abstract

The development of Intelligent Transportation Systems (ITS) puts forward higher requirements for millimeter-wave radar surveillance in the traffic environment, such as lower time delay, higher sensitivity, and better multi-target detection capability. The Constant False Alarm Rate (CFAR) detector plays a vital role in the adaptive target detection of the radar. Still, traditional CFAR detection algorithms use a sliding window to find the target limit radar detection speed and efficiency. In such cases, we propose and discuss a CFAR detection method, which transforms the Monte Carlo simulation principle into randomly sampling instantaneous Range–Doppler Matrix (RDM) data, to improve the detection ability of radar for moving targets such as pedestrians and vehicles in the traffic environment. Compared with conventional methods, simulation and real experiments show that the method breaks through the reference window limitation and has higher detection sensitivity, higher detection accuracy, and lower detection delay. We hope to promote the detection application of millimeter-wave radar in road traffic scenes.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3