Soil Aggregate Stability and Organic Carbon Content among Different Forest Types in Temperate Ecosystems in Northeastern China

Author:

Liu Yanan1,Sui Xin2,Hua Henian1,Liu Xu1,Chang Qiuyang1,Xu Ruiting1,Li Mengsha13,Mu Liqiang1

Affiliation:

1. Key Laboratory of Sustainable Forest Ecosystem Management—Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China

2. Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China

3. Institute of Nature and Ecology, Heilongjiang Academy of Sciences, Harbin 150040, China

Abstract

Soil aggregates play a crucial role in substance and energy cycles in soil systems. The fixation of soil organic carbon (SOC) is closely tied to the safeguarding mechanisms of soil aggregates. Carbon fixation involves the conversion of atmospheric carbon dioxide into organic molecules by autotrophic organisms. Soil aggregates play a significant role in carbon stabilization, allowing for the physical occlusion of SOC. This study focuses on five forest types, Betula platyphylla, Betula dahurica, Quercus mongolica, Larix gmelinii, and mixed forests comprised of Larix gmelinii and Quercus mongolica, in the Heilongjiang Central Station Black-billed Capercaillie National Nature Reserve, northeast of China. This study investigated the soil aggregate stability (SAS) (water sieving) and aggregate-associated organic carbon (AAOC) at different soil depths in five forest types. Our findings demonstrated that fine macro-aggregates (0.25–2 mm) were the main types of soil aggregates among all the forest types. The SAS gradually decreased with increasing soil depth. Notably, broad-leaved forests exhibited relatively high soil stability. The fine macro-aggregates (0.25–2 mm) had the highest AAOC content, and the AAOC level was highest in the topsoil layer. The SAS and AOCC levels of the Betula platyphylla forest and Betula dahurica forest were higher than those of other forest types and were significantly affected by the forest type, soil depth, and soil physicochemical properties. Collectively, our findings reveal the key factors influencing aggregate stability and the variations in soil organic carbon content in different forest types. These observations provide a basis for studying the mechanisms of soil aggregate carbon sequestration, as well as for the sustainable development of forest soil carbon sequestration and emission reduction.

Funder

Open Grant for Key Laboratory of Sustainable Forest Ecosystem Management—Ministry of Education, School of Forestry, Northeast Forestry University

Heilongjiang Provincial Ecological Environmental Protection Research Project

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3