Modeling the Spatial Distribution of Acacia decurrens Plantation Forests Using PlanetScope Images and Environmental Variables in the Northwestern Highlands of Ethiopia

Author:

Alemayehu Bireda12ORCID,Suarez-Minguez Juan3ORCID,Rosette Jacqueline4

Affiliation:

1. Space Science and Geospatial Institute, Addis Ababa P.O. Box 33679, Ethiopia

2. Department of Geography and Environmental Studies, Debre Markos University, Debre Markos P.O. Box 269, Ethiopia

3. Forest Research Agency of the Forestry Commission, Northern Research Station, Midlothian, Edinburgh EH25 9SY, UK

4. Department of Geography, Swansea University, Swansea SA2 8PP, UK

Abstract

Small-scale Acacia decurrens plantation forests, established by farmers on degraded lands, have become increasingly prevalent in the Northwestern Highlands of Ethiopia. This trend has been particularly notable in Fagita Lekoma District over the past few decades. Such plantations play a significant role in addressing concerns related to sustainable agricultural land use, mitigating the adverse effects of deforestation, and meeting the livelihood and energy requirements of a growing population. However, the spatial distribution of Acacia decurrens and the essential remote sensing and environmental variables that determine its distribution are not well understood. This study aimed to model the spatial distribution of Acacia decurrens plantation forests using PlanetScope data and environmental variables combined with a species distribution model (SDM). Employing 557 presence/absence points, noncollinear variables were identified and utilized as input for six SDM algorithms, with a 70:30 split between training and test data, and 10-fold bootstrap replication. The model performance was evaluated using the receiver operation characteristic curve (AUC) and true skill statics (TSS). The ensemble model, which combined results from six individual algorithms, was implemented to predict the spatial distribution of Acacia decurrens. The highest accuracy with the values of 0.93 (AUC) and 0.82 (TSS) was observed using random forest (RF), followed by SVM with values of 0.89 (AUC) and 0.71 (TSS), and BRT with values of 0.89 (AUC) and 0.7 (TSS). According to the ensemble model result, Acacia decurrens plantation forests cover 22.44% of the district, with the spatial distribution decreasing towards lower elevation areas in the northeastern and western parts of the district. The major determinant variables for identifying the species were vegetation indices, specifically CVI, ARVI, and GI, with AUC metric values of 39.3%, 16%, and 7.1%, respectively. The findings of this study indicate that the combination of high-resolution remote sensing-derived vegetation indices and environmental variables using SDM could play a vital role in identifying Acacia decurrens plantations, offering valuable insights for land use planning and management strategies. Moreover, comprehending the spatial distribution’s extent is crucial baseline information for assessing its environmental implications at a local scale.

Publisher

MDPI AG

Subject

Forestry

Reference122 articles.

1. Forest Plantations and Biodiversity: A Fresh Perspective;Stephens;J. For.,2007

2. FAO (2020). FAO Global Forest Resources Assessment 2020 Main Report, FAO.

3. Planted Forests and Biodiversity;Carnus;J. For.,2006

4. Plantation Forests, Climate Change and Biodiversity;Pawson;Biodivers. Conserv.,2013

5. Enrichment Planting in Secondary Forests: A Promising Clean Development Mechanism to Increase Terrestrial Carbon Sinks;Paquette;Ecol. Soc.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3