Treatment and Effective Utilization of Greywater: A Preliminary Case Study

Author:

Gautam Sneha,Makhitha Lakshmi M.,Gupta Anirudh,Brema J.,James E. J.,Chellaiah GajendranORCID

Abstract

Greywater has been identified as a valuable alternative water source over recent years. Few practices (i.e., recycling and reuse) of greywater have attracted global attention in meeting the future water demand. However, essential parameters should be analyzed for reliable reuse and treatment. The present study addresses the possibilities of the alternative source with the treated greywater. Gravity—governed flow methods through a column containing gravel, sand, and activated carbon was applied. The quality of treated greywater from the university campus, which included physical, chemical, and biological parameters, was assessed to check non-potable reuse suitability. The reduction percentage of organics in biological oxygen demand and chemical oxygen demand was 64% and 42%, respectively. Similarly, the reduction percentage was obtained at 74% and 66% for turbidity and electrical conductivity. The removal efficiency was 57%, 77%, 48%, and 44% for total dissolved solids, alkalinity, chlorides, and total hardness. The pH of treated water samples was found in the neutral range suggesting its suitability for reuse. Hence, the proposed greywater treatment method is a cost-effective and straightforward approach to reuse greywater for irrigation, watering the lawns, and car washing. The greywater collected can be disinfected immediately and reused with minimal possibility of regrowth of microorganisms.

Publisher

MDPI AG

Subject

Artificial Intelligence,Applied Mathematics,Industrial and Manufacturing Engineering,Human-Computer Interaction,Information Systems,Control and Systems Engineering

Reference30 articles.

1. Goal 6: Clean Water and Sanitationhttps://www.undp.org/content/undp/en/home/sustainable-development-goals/goal-6-clean-water-and-sanitation.html

2. A review on full-scale decentralized wastewater treatment systems: techno-economical approach

3. Decentralized wastewater treatment using passively aerated biological filter

4. Wastewater Report 2018. The Reuse Opportunity. Cities Seizing the Reuse Opportunity in a Circular Economy,2018

5. Centralised, decentralised or hybrid sanitation systems? Economic evaluation under urban development uncertainty and phased expansion

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3