Human Body Shapes Anomaly Detection and Classification Using Persistent Homology

Author:

de Rose Steve12,Meyer Philippe1ORCID,Bertrand Frédéric1ORCID

Affiliation:

1. Computer Science and Digital Society Laboratory (LIST3N), Université de Technologie de Troyes, 10004 Troyes Cedex, France

2. Institut de Recherche Mathématique Avancée (IRMA), CNRS UMR 7501, Université de Strasbourg, 67084 Strasbourg Cedex, France

Abstract

Accurate sizing systems of a population permit the minimization of the production costs of the textile apparel industry and allow firms to satisfy their customers. Hence, information about human body shapes needs to be extracted in order to examine, compare and classify human morphologies. In this paper, we use topological data analysis to study human body shapes. Persistence theory applied to anthropometric point clouds together with clustering algorithms show that relevant information about shapes is extracted by persistent homology. In particular, the homologies of human body points have interesting interpretations in terms of human anatomy. In the first place, anomalies of scans are detected using complete-linkage hierarchical clusterings. Then, a discrimination index shows which type of clustering separates gender accurately and if it is worth restricting to body trunks or not. Finally, Ward-linkage hierarchical clusterings with Davies–Bouldin, Dunn and Silhouette indices are used to define eight male morphotypes and seven female morphotypes, which are different in terms of weight classes and ratios between bust, waist and hip circumferences. The techniques used in this work permit us to classify human bodies and detect scan anomalies directly on the full human body point clouds rather than the usual methods involving the extraction of body measurements from individuals or their scans.

Funder

Labcom-DiTeX

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference34 articles.

1. Female Figure Identification Technique (FFIT) for apparel part I: Describing female shapes;Simmons;J. Text. Appar. Technol. Manag.,2004

2. Categorization of lower body shapes for adult females based on multiple view analysis;Song;Text. Res. J.,2011

3. Analysis and classification of three-dimensional trunk shape of women by using the human body shape model;Nakamura;Int. J. Comput. Appl. Technol.,2009

4. Cottle, F.S. (2012). Statistical Human Body Form Classification: Methodology Development and Application, Auburn University.

5. A new sizing system based on 3D morphology clustering;Hamad;Comput. Ind. Eng.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3