Convergence and Stability of a New Parametric Class of Iterative Processes for Nonlinear Systems

Author:

Cordero Alicia1ORCID,G. Maimó Javier2ORCID,Rodríguez-Cabral Antmel23,Torregrosa Juan R.1ORCID

Affiliation:

1. Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain

2. Instituto Tecnológico de Santo Domingo (INTEC), Av. Los Procéres 49, Santo Domingo 10602, Dominican Republic

3. Escuela de Matemáticas, Universidad Autónoma de Santo Domingo (UASD), Ciudad Universitaria, Av. Alma Mater, Santo Domingo 10105, Dominican Republic

Abstract

In this manuscript, we carry out a study on the generalization of a known family of multipoint scalar iterative processes for approximating the solutions of nonlinear systems. The convergence analysis of the proposed class under various smooth conditions is provided. We also study the stability of this family, analyzing the fixed and critical points of the rational operator resulting from applying the family on low-degree polynomials, as well as the basins of attraction and the orbits (periodic or not) that these points produce. This dynamical study also allows us to observe which members of the family are more stable and which have chaotic behavior. Graphical analyses of dynamical planes, parameter line and bifurcation planes are also studied. Numerical tests are performed on different nonlinear systems for checking the theoretical results and to compare the proposed schemes with other known ones.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference16 articles.

1. Artidiello, S. (2014). Design, Implementation and Convergence of Iterative Methods for Solving Nonlinear Equations and Systems Using Weight Functions. [Ph.D. Thesis, Universitat Politècnica de València].

2. Cordero, A., Moscoso, M.E., and Torregrosa, J.R. (2021). Chaos and Stability of in a New Iterative Family far Solving Nonlinear Equations. Algorithms, 14.

3. Increasing the convergence order of an iterative method for nonlinear systems;Cordero;Appl. Math. Lett.,2012

4. A modified Newton-Jarrat composition;Cordero;Numer. Algorithms,2010

5. Highly efficient family of iterative methods for solving nonlinear models;Behl;J. Comput. Appl. Math.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3