WiFi FTM and UWB Characterization for Localization in Construction Sites

Author:

Álvarez-Merino Carlos S.ORCID,Khatib Emil J.ORCID,Luo-Chen Hao QiangORCID,Michel Joel Llanes,Casalderrey-Díaz SebastiánORCID,Alonso Jesus,Barco RaquelORCID

Abstract

A high-precision location is becoming a necessity in the future Industry 4.0 applications that will come up in the near future. However, the construction sector remains particularly obsolete in the adoption of Industry 4.0 applications. In this work, we study the accuracy and penetration capacity of two technologies that are expected to deal with future high-precision location services, such as ultra-wide band (UWB) and WiFi fine time measurement (FTM). For this, a measurement campaign has been performed in a construction environment, where UWB and WiFi-FTM setups have been deployed. The performance of UWB and WiFi-FTM have been compared with a prior set of indoors measurements. UWB seems to provide better ranging estimation in LOS conditions but it seems cancelled by reinforcement concrete for propagation and WiFi is able to take advantage of holes in the structure to provide location services. Moreover, the impact of fusion of location technologies has been assessed to measure the potential improvements in the construction scenario.

Funder

European Union

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference30 articles.

1. The Fourth Industrial Revolution;Schwab,2017

2. Industry revolution IR 4.0: Future opportunities and challenges in construction industry;Alaloul;Proceedings of the MATECWeb of Conferences,2018

3. Quantitative Review of Construction 4.0 Technology Presence in Construction Project Research

4. 5G for Construction: Use Cases and Solutions

5. Dynamic Packet Duplication for Industrial URLLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3