Abstract
In this study, the wood–water interactions in Scots pine sapwood modified with maleic anhydride (MA) and sodium hypophosphite (SHP) was studied in the water-saturated state. The water in wood was studied with low field nuclear magnetic resonance (LFNMR) and the hydrophilicity of cell walls was studied by infrared spectroscopy after deuteration using liquid D2O. The results of LFNMR showed that the spin–spin relaxation (T2) time of cell wall water decreased by modification, while T2 of capillary water increased. Furthermore, the moisture content and the amount of water in cell walls of modified wood were lower than for unmodified samples at the water-saturated state. Although the amount of accessible hydroxyl groups in modified wood did not show any significant difference compared with unmodified wood, the increase in T2 of capillary water indicates a decreased affinity of the wood cell wall to water. However, for the cell wall water, the physical confinement within the cell walls seemed to overrule the weaker wood–water interactions.
Funder
Czech Republic's funding office
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献