The Role of Agriculture in Climate Change Mitigation—A Polish Example

Author:

Pawłowski Lucjan,Pawłowska Małgorzata,Kwiatkowski Cezary A.ORCID,Harasim ElżbietaORCID

Abstract

Biomass, a basic product of agriculture, is one of the main sinks of carbon in global cycle. Additionally, it can be used as a renewable source of energy, leading to depletion in CO2 emissions. The paper presents the results of estimations on the current and potential share of catch crop cultivation in climate change mitigation, in Poland, where the agricultural sector plays a significant economic role. The estimation of CO2 assimilation in biomass was performed on the basis of our own data on yields of commonly used catch crops, obtained in randomly selected 80 farms in Poland, and the content of carbon in the biomass. Calculation of energy potential of the biomass was conducted, assuming its conversion into biogas, on the basis of our own data on catch crop yields and the literature data on their biomethane potentials. The results have shown that catch crops in Poland, which are cultivated to an area of 1.177 mln ha sequestrate 6.85 mln t CO2 yr−1. However, considering the total area of fields used for spring crop cultivation, it is possible to increase the sequestration to 18.25 mln t CO2 yr−1, which constitutes about 6% of the annual emission of CO2 in Poland. Biomethane yields per hectare of particular crops ranged from 965 to 1762 m3 CH4 ha−1, and were significantly lower compared to maize, which is commonly in use in biogas plants. However, due to high biomethane potential and favorable chemical composition, catch crops can be a valuable co-substrate for the feedstocks with a high C:N ratio. The potential recovery of energy produced from aboveground biomass of catch crops harvested in Poland during the year is 6327 GWh of electricity and 7230 GWh of thermal energy. Thus, it is advisable to promote catch crops on a wide scale due to substantial environmental benefits of their cultivation.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference70 articles.

1. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2013

2. AR6 Synthesis Report: Climate Changehttps://www.ipcc.ch/report/sixth-assessment-report-cycle/

3. Global Carbon Budget 2018

4. Global Carbon Budget 2020

5. CO2 and Greenhouse Gas Emissionshttps://ourworldindata.org/co2-and-other-greenhouse-gas-emissions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3