Simulation of a CSP Solar Steam Generator, Using Machine Learning

Author:

Gonzalez Gonzalez AdrianORCID,Alvarez Cabal Jose Valeriano,Vigil Berrocal Miguel AngelORCID,Peón Menéndez Rogelio,Riesgo Fernández Adrian

Abstract

Developing an accurate concentrated solar power (CSP) performance model requires significant effort and time. The power block (PB) is the most complex system, and its modeling is clearly the most complicated and time-demanding part. Nonetheless, PB layouts are quite similar throughout CSP plants, meaning that there are enough historical process data available from commercial plants to use machine learning techniques. These algorithms allowed the development of a very accurate black-box PB model in a very short amount of time. This PB model could be easily integrated as a block into the PM. The machine learning technique selected was SVR (support vector regression). The PB model was trained using a complete year of data from a commercial CSP plant situated in southern Spain. With a very limited set of inputs, the PB model results were very accurate, according to their validation against a new complete year of data. The model not only fit well on an aggregate basis, but also in the transients between operation modes. To validate applicability, the same model methodology is used with a data from a very different CSP Plant, located in the MENA region and with more than double nominal electric power, obtaining an excellent fitting in the validation.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference17 articles.

1. Solar Tracker Market Report 2019-2029,2019

2. State-of-the-art of solar thermal power plants—A review

3. Whither CSP? Taking stock of a decade of concentrating solar power expansion and development, deliverable 4.2 of the H2020 project;Lilliestam;MUSTEC,2020

4. Modeling and performance simulation of 100 MW LFR based solar thermal power plant in Udaipur India

5. Modeling the potential for thermal concentrating solar power technologies

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3