Abstract
Compressed air is crucial on an electric or electrified heavy-duty vehicle. The objective of this work was to experimentally determine the performance parameters of the first prototype of an electric-driven sliding-vane air compressor, specifically designed for electric and electrified heavy-duty vehicles, during the transient conditions of cold start-ups. The transient was analyzed for different thermostatic temperatures: 0 °C, −10 °C, −20 °C, and −30 °C. The air compressor unit was placed in a climatic chamber and connected to the electric grid, the water-cooling loop, and the compressed air measuring and controlling rig. The required start-up time was greater the lower the thermostatic temperature, ranging from 30 min at 0 °C to 221 min at −30 °C and depending largely on the volume of the lubricant oil filled initially. The volume flow rate of the compressed air was lower than nominal at the beginning, but it showed a step increase well beyond nominal when the oil reached 50 °C and then decreased gently towards nominal, while the input power kept steady at nominal after a short initial peak. These facts must be considered when estimating the time and the energy required by the air compressor unit to fill up the compressed air tanks of the vehicles.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献