Improved Virtual Inertia of PMSG-Based Wind Turbines Based on Multi-Objective Model-Predictive Control

Author:

Qin Shiyao,Chang Yuyang,Xie Zhen,Li Shaolin

Abstract

In the case of a high penetration rate of wind energy conversion systems, the conventional virtual inertia control of permanent magnet synchronous generators (PMSG) has an insufficient support capability for system frequency, leading to an unstable system frequency and a slower response. Considering the finite control set model predictive control has multi-objective regulation capabilities and efficient tracking capabilities, and an improved multi-objective model-predictive control is proposed in this paper for PMSG-based wind turbines with virtual inertia based on its mathematical model. With the prediction model, the optimal control of the current and the frequency of the PMSG-based wind turbines can be obtained. Since the shaft torque changes rapidly under high virtual inertia, shaft oscillation may occur under this scenario. To address this problem, the electromagnetic torque is set as an additional optimization objective, which effectively suppresses the oscillation. Furthermore, based on accurate short-term wind speed forecasting, a dynamic weight coefficient strategy is proposed, which can reasonably distribute the weight coefficients according to the working conditions. Finally, simulations are carried out on a 2 MW PMSG-based wind turbine platform, and the effectiveness of the proposed control strategies is verified.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3