Structural and Catalytic Characterization of La0.6Sr0.4MnO3 Nanofibers for Application in Direct Methane Intermediate Temperature Solid Oxide Fuel Cell Anodes

Author:

Squizzato EnricoORCID,Sanna Caterina,Glisenti AntonellaORCID,Costamagna PaolaORCID

Abstract

In the present work, structural and catalytic characterization was performed on La0.6Sr0.4MnO3 (LSM) nanofibers. The LSM nanofibers were obtained using the electrospinning technique. For comparison, LSM powders with identical composition were characterized as well. The LSM powders were prepared through a self-combustion citrate-based procedure. SEM, EDX, XRD, and BET investigations were carried out on both LSM nanofibers and powders, pointing out the different structural features. The LSM nanofibers showed a higher surface area than the LSM powders and a lower presence of strontium oxide on the surface. Results of the H2-Temperature Programmed Reduction (TPR) tests showed evidence of a higher reactivity of the nanofibers compared to the powders. The catalytic characterization was performed utilizing a methane oxidation activity test, revealing a better catalytic performance of the LSM nanofibers: at 800 °C. The methane conversion achieved with the LSM nanofibers was 73%, which compared well with the 50% obtained with powders at 900 °C.

Funder

Compagnia di San Paolo

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3