Electronic Population Reconstruction from Strong-Field-Modified Absorption Spectra with a Convolutional Neural Network

Author:

Richter Daniel12,Magunia Alexander12,Rebholz Marc1,Ott Christian1ORCID,Pfeifer Thomas1ORCID

Affiliation:

1. Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany

2. Fakultät für Physik und Astronomie, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany

Abstract

We simulate ultrafast electronic transitions in an atom and corresponding absorption line changes with a numerical, few-level model, similar to previous work. In addition, a convolutional neural network (CNN) is employed for the first time to predict electronic state populations based on the simulated modifications of the absorption lines. We utilize a two-level and four-level system, as well as a variety of laser-pulse peak intensities and detunings, to account for different common scenarios of light–matter interaction. As a first step towards the use of CNNs for experimental absorption data in the future, we apply two different noise levels to the simulated input absorption data.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3