Ecosystem Service Valuation along Landscape Transformation in Central Ethiopia

Author:

Biratu Abera Assefa,Bedadi Bobe,Gebrehiwot Solomon Gebreyohannis,Melesse Assefa M.ORCID,Nebi Tilahun Hordofa,Abera WuletawuORCID,Tamene LulsegedORCID,Egeru AnthonyORCID

Abstract

Land degradation and discontinuation of ecosystem services (ES) are a common phenomenon that causes socio-economic and environmental problems in Ethiopia. However, a dearth of information is known about how ES are changing from the past to the future with regard to land use land cover (LULC) changes. This study aimed at estimating the values of ES based on the past and future LULC changes in central Ethiopia. Maximum likelihood classifier and cellular automata-artificial neuron network (CA-ANN) models that integrate the module for land use change evaluation (MOLUSE) were used to classify and predict LULC. The CA-ANN model learning and validation was employed to predict LULC of 2031 and 2051. Following LULC change detection and prediction, the total ES values were estimated using the benefit transfer method. Results revealed that forests, wetlands, grazing lands, shrub-bush-woodlands, and water bodies were reduced by 9755 ha (37%), 4092 ha (38.4%), 21,263 ha (81%), 63,161 ha (25.7%), and 905 ha (1%), respectively, between 1986 and 2021. Similarly, forests, wetlands, grazing lands, shrub-bush lands, and water bodies will experience a decline of 1.5%, 0.5%, 2.6%, 19.6%, and 0.1%, respectively. Meanwhile, cultivated lands, bare-lands, and built-up areas will experience an increase between 1986 and 2051. The estimated total ES values were reduced by US$58.3 and 85.4 million in the period 1986–2021 and 1986–2051. Food production and biological control value increased while 15 other ES decreased throughout the study periods. Proper land use policy with strategic actions, including enforcement laws for natural ecosystems protection, afforestation, ecosystems restoration, and conservation practices, are recommended to be undertaken to enhance multiple ES provision.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3