Quantifying the Aboveground Biomass (AGB) of Gobi Desert Shrub Communities in Northwestern China Based on Unmanned Aerial Vehicle (UAV) RGB Images

Author:

Ding Jie,Li Zhipeng,Zhang Heyu,Zhang Pu,Cao Xiaoming,Feng YimingORCID

Abstract

Shrubs are an important part of the Gobi Desert ecosystem, and their aboveground biomass (AGB) is an important manifestation of the productivity of the Gobi Desert ecosystem. Characterizing the biophysical properties of low-stature vegetation such as shrubs in the Gobi Desert via conventional field surveys and satellite remote sensing images is challenging. The AGB of shrubs had been estimated from spectral variables taken from high-resolution images obtained by unmanned aerial vehicle (UAV) in the Gobi Desert, Xinjiang, China, using vegetation feature metrics. The main results were as follows: (1) Based on the UAV images, several RGB vegetation indices (RGB VIs) were selected to extract the vegetation coverage, and it was found that the excess green index (EXG) had the highest accuracy and the overall extraction accuracy of vegetation coverage reached 97.00%. (2) According to field sample plot surveys, the AGB and shrub crown area of single shrubs in the Gobi Desert were in line with a power model. From the bottom of the alluvial fan to the top of the alluvial fan, as the altitude increased, the AGB of the vegetation communities showed an increasing trend: the AGB of the vegetation communities at the bottom of the alluvial fan was 2–90 g/m2, while that at the top of the alluvial fan was 60–201 g/m2. (3) Vegetation coverage (based on the UAV image EXG index) and AGB showed a good correlation. The two conform to the relationship model (R2 = 0.897) and the expression is Y = 1167.341 x0.946, where Y is the AGB of the sample plots in units g/m2 and x is the vegetation coverage extracted by the VI. (4) The predicted AGB values of Gobi Desert shrubs using UAV RGB images based on a power model were closer to the actual observed AGB values. The study findings provide a more efficient, accurate, and low-cost method for estimating vegetation coverage and AGB of Gobi Desert shrubs.

Funder

the Third Xinjiang Scientific Expedition and Research Program

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3