Abstract
Suspended sediment is an important constituent of freshwater ecosystems that supports biogeochemical, geomorphological, and ecological processes. Current knowledge of suspended sediment is largely based on surface water studies; however, improved understanding of surface and in situ groundwater suspended sediment processes will improve pollutant loading estimates and watershed remediation strategies. A study was conducted in a representative mixed-use, agro-forested catchment of the Chesapeake Bay Watershed of the northeast, USA, utilizing an experimental watershed study design, including eight nested sub-catchments. Stream water and shallow groundwater grab samples were collected monthly from January 2020 to December 2020 (n = 192). Water samples were analyzed for suspended sediment using gravimetric (mg/L) and laser particle diffraction (µm) analytical methods. Results showed that shallow groundwater contained significantly higher (p < 0.001) total suspended solid concentrations and smaller particle sizes, relative to stream water. Differences were attributed to variability between sites in terms of soil composition, land use/land cover, and surficial geology, and also the shallow groundwater sampling method used. Results hold important implications for pollutant transport estimates and biogeochemical modeling in agro-forested watersheds. Continued work is needed to improve shallow groundwater suspended sediment characterization (i.e., mass and particle sizes) and the utility of this information for strategies that are designed to meet water quality goals.
Funder
National Science Foundation
United States Department of Agriculture
Subject
Nature and Landscape Conservation,Ecology,Global and Planetary Change
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献