Seasonal Dynamics of Organic Carbon and Nitrogen in Biomasses of Microorganisms in Arable Mollisols Affected by Different Tillage Systems

Author:

Kravchenko Yuriy S.ORCID,Zhang Xingyi,Song Chunyu,Hu Wei,Yarosh Anna V.ORCID,Voitsekhivska Olena V.

Abstract

Tillage has been reported to induce seasonal changes of organic carbon (Cmicro) and nitrogen (Nmicro) in the biomass of microorganisms. Soil microorganisms execute such ecosystem functions as it is an immediate sink of labile biophil elements; it is an agent of a conversion, catalysis and synthesis of humus substances; it transforms soil contaminants into nonhazardous wastes and it participates in soil aggregation and pedogenesis as a whole. However, the seasonal turnover of microorganisms on arable lands in temperate ecosystems has not been studied at a relevant level. Hence, we are aimed at studying the dynamics of such soil microbial biomass patterns as Cmicro, Nmicro, microbial index (MI = (Cmicro/CTOC)·100%) and CO2-C emissions against the background of 9 years of tillage and 22 years of abandoned (Ab) and fallow (F) usage. Our study was conducted on a long-term experimental site on a Mollisol in Northeast China. The maximum Cmicro and Nmicro contents were recorded at the beginning of the growing season at the 0–10-cm layer and mid-July at the 20–40-cm layer, while the minimum content was during August–October. The Cmicro content ranged from 577.79 to 381.79 mg−1 kg−1 using Ab in the spring to 229.53 to 272.86 mg−1 kg−1 in the autumn using CT (conventional tillage) and F in the 0–10- and 10–20-cm layers, respectively. The amplitude of Nmicro content changes were several times lower as compared with the Cmicro. The smallest quartile range (IQR0.25–0.75) of such changes was shown when using the following treatments: no till (NT) and Ab in the 0–10-, NT and F in the 10–20- and CT in the 20–40-cm layer. The widest Cmicro:Nmicro ratio was recorded at F and CT in the 0–20- and CT and rotational tillage (Rot) in the 20–40-cm layer. The MI dynamics were similar to the trends of Cmicro and Nmicro and changed from 0.72 ± 0.168 to 2.00 ± 0.030%. The highest share of Cmicro in CTOC was at Ab (1.82 ± 1.85%) and NT (1.66 ± 1.52 %) in the 0–10-, Ab (1.23 ± 1.27%) and NT (1.29 ± 1.32%) in the 10–20- and Ab (1.19 ± 1.09%) and F (1.11 ± 1.077%) in the 20–40-cm layer, correspondingly. The Pearson’s correlation coefficient between Cmicro and CTOC increased from the upper 0–10- to the lower 20–40-cm layer; it was “strong” and “high” between Cmicro and CTOC. Different uses of Mollisol affected the amplitude of the Cmicro and Nmicro seasonal changes, but it did not change their trend. Our results suggest the key role of Ab and NT technologies in Cmicro accumulation in the total organic carbon (TOC).

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3