A Comparative Study of Malonic and l-Glutamic Acids for Metal Leaching from Spent Lithium-Ion Batteries: Kinetic and Optimization Analysis

Author:

Sohbatzadeh Laleh1,Shafaei Tonkaboni Sied Ziaedin1,Noaparast Mohammad1,Entezari-Zarandi Ali2ORCID

Affiliation:

1. School of Mining Engineering, Faculty of Engineering, University of Tehran, Tehran 1439957131, Iran

2. Hecla Québec, Rouyn-Noranda, QC J9Z 2Y9, Canada

Abstract

In this research, two different hydrometallurgical processes were introduced for recycling the cathodes of lithium-ion batteries (LIBs) from spent LIBs. The cathode materials were leached by malonic acid (MOA), as a leaching agent, and ascorbic acid (AA), as a reducing agent, in the first process, and by l-Glutamic acid (l-Glu), as a leaching agent, and AA, as a reducing agent, in the second process. The results of the tests showed that, with a similar solid-to-liquid (S/L) ratio of 10 g/L and a recovery time of 2 h for both processes, when using MOA of 0.25 M and AA of 0.03 M at 88 °C, 100% lithium (Li), 80% cobalt (Co), 99% nickel (Ni), and 98% manganese (Mn) were extracted, and when using l-Glu of 0.39 M and AA of 0.04 M at 90 °C, 100% Li, 79% Co, 91% Ni, and 92% Mn were extracted. The kinetics of the leaching process for the two systems were well justified by the Avrami equation, which was diffusion-controlled in the MOA + AA system, with the apparent activation energy of 3.23, 14.72, 7.77, and 7.36 kJ/mol for Mn, Ni, Co, and Li, respectively. The l-Glu + AA involved chemical-diffusion kinetic control, with the apparent activation energy for Mn, Ni, Co, and Li of 9.95, 29.42, 20.15, and 16.08 kJ/mol, respectively. Various characterization techniques were used to explain the observed synergistic effect in the l-Glu + AA system, which resulted in reduced acid consumption and enhanced recovery compared to the case of MOA + AA. This occurred because l-Glu is not able to reduce and recover metals without a reductant, while MOA has reductant properties.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3