Evolution of Contact Metamorphic Rocks in the Zhoukoudian Area: Evidence from Phase Equilibrium Modelling

Author:

Yan Jun1,Cui Ying1,Liu Xiaoyu2

Affiliation:

1. MOE Key Laboratory of Orogenic Belt and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China

2. National Research Center for Geoanalysis, Beijing 100037, China

Abstract

The Yanshan intraplate tectonic belt is a tectonic-active area in the central part of the North China Craton that has undergone long-term orogenic evolution. Detailed studies on magmatic activity and metamorphism of this belt are significant for restoring its orogenic thermal evolution process. The Fangshan pluton in the Zhoukoudian area within this tectonic belt is a product of the late Mesozoic Yanshan event. However, there is a lack of detailed research on the metamorphic evolution history of the ancient terrane surrounding the Fangshan pluton subjected to contact thermal metamorphism. To further constrain the metamorphic P–T evolution of contact metamorphism associated with the Fangshan pluton, we collected rock samples in the andalusite–biotite contact metamorphic zone of the Fangshan pluton, and conducted petrographic investigations, geochemical and mineral composition analysis, and phase equilibrium modeling. The phase equilibrium modeling in the MnO–Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O system indicates that the peak mineral assemblages of andalusite–biotite schists are pl + q + mu + bi + and ± kfs + ilm + mt, formed at 550 to 610 °C, 1 to 3.5 kbar, and the peak mineral assemblage of garnet–andalusite–cordierite–biotite schists is gt + pl + q + bi + and + cord + ilm + mt, formed at 580 to 620 °C, 1.5 to 2.1 kbar. Therefore, we believe that the rocks in the andalusite biotite contact metamorphic zone of the Fangshan pluton underwent low pressure and medium temperature metamorphism, with the peak metamorphic conditions of about 550–610 °C, <3.5 kbar. The results show that the rocks in contact with the thermal metamorphic zone were rapidly heated by the heat released by the Fangshan pluton, and after reaching the peak metamorphic temperature, they were cooled down simultaneously with the cooling of the rock mass, defined in a nearly isobaric P–T trajectory.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3