Influences of Water Content on Acousto-Mechanical Properties and Failure Behaviors of Triaxially Compressed Shale

Author:

Zhang Sui12,Cai Fuming3,Cao Yangbing3ORCID,Yan Qiang3

Affiliation:

1. Engineering Technology Innovation Center of Mineral Resources Explorations in Bedrock Zones, Ministry of Natural Resources, Guiyang 550081, China

2. 103 Geological Brigade of the Bureau, Geology and Mineral Exploration and Development in Guizhou Province, Tongren 554300, China

3. Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China

Abstract

Due to the extreme water sensitivity of shale, the excavation of shale underground engineering is prone to major disaster accidents such as roof falls and collapses. However, current investigations have failed to fully explain the mechanisms by which water content affects shale damage behaviors. In this study, the acousto-mechanical properties and failure behaviors of laminated shale under different confining pressures σ3 are investigated with the aid of AE monitoring for three different water content states. The results show that the shale strength decreases with the increase of the water content, but it increases as the confining pressure σ3 increases. For the shale, the change in the wetting angle and the distance between the centroids of the two adjacent particles inside the bedding plane is more prominent than the surrounding shale matrix, and the swelling pressure is generated among the clay minerals, which are the two main mechanisms for the bedding-participating failure and the shale softening after immersion. Moreover, with the increase of the water content and σ3, the damage mode of shale specimens gradually changes from tension damage to shear damage. Controlled by bedding, shale failure shows significant suddenness without clear acoustical precursors. This study provides experimental and theoretical bases for the stability analysis of shale underground engineering.

Funder

Geological Research Project of Bureau of Geology and Mineral Exploration and Development Guizhou Province of China

Guizhou Province High Level Innovative Talent Project

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3