Experimental Study on Dense Settlement of Full-Tail Mortar under Mechanical Vibration

Author:

Lai Wei123,Zhou Keping1,Gao Feng1,Pan Zheng1ORCID,Gao Xiu1

Affiliation:

1. School of Resources and Safety Engineering, Central South University, Changsha 410083, China

2. Changsha Mining Research Institute Co., Ltd., Changsha 410083, China

3. State Key Laboratory of Metal Mine Safety Technology, Changsha 410012, China

Abstract

There are some problems in the application of slurry preparation technology, such as wide fluctuation range of underflow concentration, long settling time and low efficiency of solid–liquid separation. This is an important basis for researching the thick settling law of tailings slurry under the action of mechanical vibration and its influencing factors to solve these problems. To this end, a small vibration thickening testing machine and vibrating rod were designed and developed. Physical simulation experiments were conducted to analyze the settling characteristics of tailings slurry under different vibration duration, start time, vibration frequency, and vibration inertia single factors. The results show that: (1) Mechanical vibration can effectively accelerate the settling speed of tailings particles, but the relationship between them is a non-positive correlation, and mechanical vibration time control with in 5 mins is the best. With the delay of starting the vibration time, the final mass concentration first increases and then decreases. (2) As the vibration frequency increases, the final mass concentration of tailings settlement first increases and then decreases. When the eccentric vibrator speed is 6000 r/min, the best slurry settlement effect is achieved. (3) When the vibration inertia of the eccentric oscillator is 0.158 g·cm2 and the final mass concentration reaches 70.1%, the settling time only takes 210 min. (4) The lower the slurry concentration, the faster the settling speed. As the initial concentration increases, the final thickening time is also gradually prolonged. The research results provide some insights for the rapid thickening technology of rake-free paste thickeners.

Funder

Huxiang Youth Talent Project

Fundamental Research Funds for the Central Universities of Central South

Postgraduate Innovative Project of Central South University

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3