Tectonic Evolution of the Fawakhir Ophiolite, Central Eastern Desert of Egypt: Implications for Island Arc Amalgamation and Subduction Polarity during the Neoproterozoic

Author:

Yousef Samar1,Oh Chang Whan1,Kawaguchi Kenta2,Abdelkareem Mohamed34ORCID

Affiliation:

1. Department of Earth and Environmental Sciences, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea

2. Division of Earth Sciences, Faculty of Social and Cultural Studies, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

3. Geology Department, South Valley University, Qena 83523, Egypt

4. Remote Sensing Lab, South Valley University, Qena 83523, Egypt

Abstract

The Fawakhir area consists of an ophiolite sequence surrounded by an ophiolitic mélange. In the mélange, serpentinized ultramafic rock, gabbro, gabbroic diorite, diabase, andesite, and basalt occur as tectonic blocks within the metasediments. The gabbro gives a zircon U–Pb age of ~816 Ma, and the trace element composition of the zircon suggests its generation under a continental-arc tectonic setting. The geochemistry of gabbro and other tectonic blocks in the ophiolitic mélange indicates their formation from a backarc basin in a continental island arc tectonic setting. The ophiolite sequence consists of serpentinized ultramafic rock, gabbro, and basaltic rocks and was intruded by felsic dikes. The gabbro from the ophiolite sequence and felsic dikes give zircon U–Pb ages of 742 Ma and 723 Ma, respectively. Trace elements composition of this zircon refers to their formation in a continental-arc tectonic setting. The geochemistry of rocks in the ophiolitic sequence indicates their formation in a forearc basin. Together with previous studies, this study suggests that the tectonic blocks in the mélange formed in a backarc during the early-stage northwards subduction event, which may have started at ~816 Ma or earlier. On the other hand, the rocks in the ophiolite sequence can be considered to have formed in a forearc by the later eastwards subduction event at ~742–723 Ma.

Funder

National Research Foundation of Korea

National Institute for International Education (NIIED), a branch of the Republic of Korea’s Ministry of Education

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3